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‭SUMMARY‬
‭Quantum dots are the future of solar energy production, promising conversion efficiencies that‬

‭might one day rival or even outperform traditional solar panel technology. However,‬

‭experimental development of quantum dots with the most optimal setups takes months of‬

‭tedious and costly preparation. To mitigate the cost of this research, simulations of said‬

‭quantum dots can be used to identify optimal parameters without the need to conduct numerous‬

‭lengthy experiments. We hypothesize that by taking into consideration the importance of‬

‭nanoscale quantum phenomena such as confinement and recombination, our developed Python‬

‭simulation will be able to model the conversion efficiency of CdSe quantum dots in a‬

‭photovoltaic solar cell with an error of under 5%. Our simulation found CdSe quantum dot‬

‭conversion efficiency to be 1.66%, which demonstrates comparable rates to the 1.5% efficiency‬

‭at 50.6% sun found by Lee et. al in 2008 in their experimentation with colloidal CdSe quantum‬

‭dots– representing a 10.66% realized error and helping prove that simulations can indeed be‬

‭used as a convincing alternative to painstaking experimentation in the development of optimized‬

‭quantum dot technologies for energy production. In the future, research should concentrate on‬

‭reducing this error by factoring in more detailed modeling of quantum phenomenon such as‬

‭trapping and multiple exciton generation.‬
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‭INTRODUCTION‬
‭The quest for more efficient energy conversion technologies has spurred considerable interest‬

‭in the development of advanced photovoltaic materials. Among these, quantum‬

‭dots—nanoscale semiconductor particles—have emerged as a promising alternative to‬

‭traditional solar cells due to their potential for high conversion efficiencies and tunable electronic‬

‭properties. Quantum dots, particularly Cadmium Selenide (CdSe), are noteworthy for their‬

‭size-dependent electronic and optical characteristics. This phenomenon allows quantum dots to‬

‭absorb and emit light at specific wavelengths, potentially enhancing their performance in‬

‭photovoltaic applications. However, the experimental process to optimize these materials is both‬

‭time-consuming and costly, often involving extensive trial and error.‬

‭Simulations offer a compelling alternative by enabling researchers to model and predict the‬

‭performance of quantum dots without the need for exhaustive physical experimentation.‬

‭Leveraging biophysics equations to simulate the electronic properties and energy conversion‬

‭efficiency of CdSe quantum dots can significantly expedite the development process. The‬

‭primary challenge is to accurately account for the nanoscale quantum phenomena, such as‬

‭quantum confinement and recombination dynamics, that influence the efficiency of these‬

‭materials. Accurate simulation requires incorporating these complex quantum effects into‬

‭predictive models to achieve reliable and actionable results. Our research aims to address this‬

‭challenge by developing a Python-based simulation that models the energy conversion‬

‭efficiency of CdSe quantum dots in photovoltaic cells. We hypothesize that by incorporating‬

‭detailed quantum mechanical properties and utilizing biophysics equations, our simulation will‬

‭be capable of predicting the conversion efficiency with an error margin of less than 5%. This‬

‭hypothesis is grounded in the assumption that accounting for nanoscale quantum phenomena,‬

‭such as confinement and recombination rates, will yield a simulation result more closely aligned‬

‭with experimental data.‬

‭The purpose of this study is to validate the accuracy of our simulation model and demonstrate‬

‭its potential as a tool for optimizing quantum dot-based solar cells. We anticipate that our‬

‭findings will underscore the viability of simulation as a cost-effective alternative to physical‬

‭experimentation in the development of advanced photovoltaic technologies. By achieving a‬

‭simulation accuracy within the proposed error margin, we hope to establish a robust framework‬

‭for future research and development in quantum dot photovoltaics, ultimately advancing the field‬

‭towards more efficient and practical solar energy solutions.‬
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‭RESULTS‬
‭Our simulation showed a predicted solar energy conversion efficiency of 1.66% on average for‬

‭CdSe quantum dots in our system. When comparing our results to similarly unmodified and‬

‭unoptimized CdSe quantum dots such as the 50% sun efficiency outlined by‬

‭https://pubs.acs.org/doi/full/10.1021/jp802572b‬‭,‬‭we get a margin of error of only 10.67%.‬

‭Our first set of results pertains to the simulation of varying solar intensities throughout the year.‬

‭Solar intensity was adjusted for atmospheric effects and focused by the funnel, recorded hourly.‬

‭As shown in Figure 1, solar intensity peaked around midday and varied significantly based on‬

‭the zenith angle. The data illustrates a consistent pattern, with higher intensities observed‬

‭during the summer months and lower intensities during the winter months.  The zenith angle‬

‭reaches its minimum on day 182, corresponding to the summer solstice. Solar intensity is‬

‭highest around this day but decreases to even lower than day 91 by the time of day 273,‬

‭indicating that the period following the summer solstice receives the highest solar intensity,‬

‭aside from the effect of the clearness index.‬

‭Figure 2 shows the power output, analyzed for checkpoint days 1, 91, 182, and 273. In the line‬

‭plot shown in Figure 2a, we see that day 182 exhibited the highest overall power generation.‬

‭However, at hours 10 and 11, day 91 and day 273 showed higher power output, suggesting‬

‭variations in weather conditions or the probabilistic quantum effects in the quantum dot system.‬

‭The results indicate that while solar intensity is a significant factor, it is not the sole determinant‬

‭of power output. The polynomial curve fit in Figure 2b highlights that day 182 consistently had‬

‭higher power output, but day 91 was comparable at some points, and day 273 showed greater‬

‭power output than even day 91 despite a lower solar intensity. This is due to the higher‬

‭clearness index at day 273. This demonstrates the complex interplay of various factors affecting‬

‭power output, and the importance of considering all of these various factors. Figure 3, showing‬

‭the cumulative power output throughout the day for different days, showed that the total energy‬

‭produced increased steadily, with higher slopes around midday corresponding to the more‬

‭optimal positioning of the sun. This confirms the influence of solar intensity on cumulative‬

‭energy production.‬

‭Figure 4a provides a visual representation of the temporal and daily variations in power output.‬

‭It shows that power output peaks between days 169 and 229, corresponding to the summer‬

‭period with typically sunny days in Austin. Gaps in the heatmap such as those seen on days 94‬
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‭and 253 indicate periods of high cloudiness, which explains their relatively low power outputs‬

‭despite the days around them having high power outputs. Figure 4b shows the cumulative‬

‭power output for each day and highlights the influence of the clearness index. Higher cumulative‬

‭power outputs correspond to higher clearness index values, emphasizing the importance of this‬

‭metric in power output calculations, but gaps and unpredictability is also seen, which can be‬

‭attributed to weather conditions.‬

‭Figures 5 and 6 display some of the quantum characteristics of the simulation. Figure 5 shows‬

‭the size distribution.used for simulating the variations in size commonly found in quantum dots.‬

‭Employing a logarithmic scale was crucial for correctly modeling the quantum dot array, as it‬

‭reflects the natural distribution of sizes. We used a lognormal distribution with a mean diameter‬

‭of 2 nanometers and a standard deviation of 0.4 nanometers. Figure 6 shows a sample electron‬

‭wavefunction. The wavefunction demonstrates the quantum confinement effects in the quantum‬

‭dot. The oscillatory nature of the wavefunction and the corresponding probability density peaks‬

‭illustrate the discrete energy levels and the spatial confinement of the electron. The probability‬

‭density is higher near the center of the quantum dot and decreases towards the edges,‬

‭indicating that the electron is more likely to be found near the center.‬

‭DISCUSSION‬

‭The primary results indicate that our simulation effectively models the conversion efficiency of‬

‭CdSe quantum dots with a realized error of 10.66%. The variations in solar intensity throughout‬

‭the year, as shown in Figure 1, demonstrate the importance of considering seasonal and daily‬

‭changes in solar exposure when designing photovoltaic systems. The power output results,‬

‭especially those depicted in Figures 2 and 3, highlight the complexity of factors influencing‬

‭energy production, such as weather conditions and quantum effects.‬

‭The cumulative power output data (Figure 4) emphasize the impact of clearness index and‬

‭atmospheric conditions on overall power generation. Figures 5 and 6 provide insights into the‬

‭quantum mechanical behavior of the quantum dots, including the size distribution and‬

‭wavefunction characteristics, which are crucial for understanding their energy conversion‬

‭properties.‬

‭Several factors could have influenced our results. One significant limitation is the accuracy of‬

‭our atmospheric data, which directly impacts the calculated solar intensity and, consequently,‬

‭4‬

‭107‬

‭108‬

‭109‬

‭110‬

‭111‬

‭112‬

‭113‬

‭114‬

‭115‬

‭116‬

‭117‬

‭118‬

‭119‬

‭120‬

‭121‬

‭122‬

‭123‬

‭124‬

‭125‬

‭126‬

‭127‬

‭128‬

‭129‬

‭130‬

‭131‬

‭132‬

‭133‬

‭134‬

‭135‬

‭136‬

‭137‬

‭138‬

‭139‬

‭140‬



‭the power output. Additionally, the simplifications made in modeling quantum mechanical‬

‭processes, such as assuming certain quantum numbers and ignoring some complex‬

‭interactions, could have introduced errors.‬

‭The biggest error we have to acknowledge is inaccurate or missing data parameters vital to‬

‭ensuring the maximum accuracy of our simulation. Since values such as that of the trapping‬

‭coefficient for CdSe quantum dots are not readily available, we have to manually approximate‬

‭the value, which introduces significant deviations from the real values.‬

‭Future research should be aimed at utilizing the most optimal parameters in these simulations,‬

‭which would ensure that the simulation matches reality much more closely. Moreover,‬

‭optimization scripts could be incorporated to understand the ideal parameter to use for a‬

‭quantum dot, which could influence the processes used to create the quantum dot in the‬

‭experiment.‬

‭In conclusion, our simulation of CdSe quantum dots demonstrated a conversion efficiency‬

‭comparable to experimental results, validating the potential of simulation as a tool for optimizing‬

‭quantum dot technologies. By addressing the limitations and exploring new avenues of‬

‭research, we can further enhance the efficiency and practicality of quantum dots in solar energy‬

‭applications.‬

‭MATERIALS AND METHODS‬

‭To accurately simulate the intake of sunlight, we begin by calculating the zenith angle, which is‬

‭crucial for understanding the interaction of sunlight with our system. The zenith angle, denoted‬

‭as θ‬‭z‬‭, is the angle between the vertical direction and the line to the sun. For our location in‬

‭Austin, Texas, θ‬‭z‬ ‭is given by:‬

‭θ‬‭z‬ ‭=cos‬‭−1‬‭(sin(δ)sin(φ)+cos(δ)cos(φ)cos(H)) (1)‬

‭where δ is the solar declination, φ is the latitude of Austin, and H is the solar hour angle. These‬

‭parameters vary with time and date and are essential for calculating the precise position of the‬

‭sun in the sky. δ and H are found from formulae given by NOAA. We then took the cosine of this‬

‭angle and multiplied it by the solar constant (approximately 1361W/m2) to find the adjusted‬

‭solar intensity. If cos(θ‬‭z‬‭) is not positive, this adjusted quantity just becomes equal to 0 as the sun‬

‭is beneath the horizon at that time.‬

‭We now need to correct the sunlight intensity value based on the atmosphere. We use the‬

‭clearness index, for which values will be sourced from NASA’s Atmospheric Science Data‬

‭Center and applied to the adjusted intensity on an hourly basis, ensuring a dynamic adaptation‬
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‭to atmospheric conditions. By multiplying our adjusted intensity with this factor, we get the true‬

‭value of solar intensity that hits the ground on any given day.‬

‭The funnel’s hyperbolic shape is modeled to focus the incoming solar radiation onto the‬

‭quantum dot array. The reflective properties of the polished aluminum funnel are crucial here.‬

‭The concentration factor is calculated based on the funnel’s geometry, specifically the ratio of‬

‭the cross-sectional area of the funnel’s wider end to that of the narrower end focused on the‬

‭quantum dot array. Using this factor and the reflective percentage of polished aluminum, we see‬

‭that I‬‭focus‬ ‭is equal to the product of the reflectivity‬‭of polished aluminum (83%), the intensity after‬

‭atmospheric adjustments, and the concentration factor of 2500 (accounting for the aperture radii‬

‭of 50 and 1 centimeters, respectively).‬

‭We calculate the energy per photon using Planck’s equation, using the average photon‬

‭wavelength of 550 nm. This is done by the equation‬ ‭. With the total intensity and‬‭𝐸‬
‭𝑝ℎ𝑜𝑡𝑜𝑛‬

‭ ‬ = ‭ ‬ ‭ℎ𝑐‬
λ

‭the energy per photon, we can calculate the number of photons per second striking a area as‬

‭the product between I‬‭total‬ ‭and area divided by E‬‭photon‬‭.‬‭Finally, we obtain the photon generation‬

‭rate per hour by multiplying the previous value by a factor of 3600. This rate is a crucial input‬

‭metric for the next part of our simulation, the quantum dot array. To model quantum dots and‬

‭excitons accurately, we must consider as many major properties and processes as possible,‬

‭including material composition, geometric structure, quantum mechanical properties, and size‬

‭dependent properties. This ensures that we calculate the exciton generation rate as accurately‬

‭as possible. The chosen material for our quantum dots is Cadmium Selenide (CdSe), known for‬

‭its high absorption efficiency. The distribution of quantum dot sizes is typically characterized by‬

‭a lognormal distribution, where D(d) is the probability density for diameters, μ = ln(3.9×10‬‭−9‬‭)‬

‭represents the mean logarithm of the diameters, and σ = 0.4 is the standard deviation of the‬

‭logarithm of the diameters. The distribution will range from 2.3 to 5.5 nanometers. To properly‬

‭simulate the characteristics of excitons and calculate the rate at which excitons transition‬

‭between energy states, we numerically solve the Schr ̈odinger equation for a 3D finite potential‬

‭well. The finite difference method is employed using a grid size of 25 and a step size governed‬

‭by the radius divided by the grid size. This provides the energy levels of our dot and‬

‭wavefunctions for electrons and holes. The Laplacian operator ∇‬‭2‬ ‭of the Schrödinger equation‬

‭is discretized using the central difference method. General wavefunctions for electrons (ψ‬‭e‬‭) and‬

‭holes (ψ‬‭h‬‭) in an ellipsoidal quantum dot with a 3D‬‭finite potential well can be approximated as:‬

ψ
‭𝑒‬
(‭𝑟‬) ≈ ‭ ‬

‭𝑛‬,‭𝑙‬,‭𝑚‬
∑ ‭𝐴‬‭𝑒‬

‭𝑛‬,‭𝑙‬,‭𝑚‬
‭𝑅‬‭𝑒‬

‭𝑛‬,‭𝑙‬
(‭𝑟‬)‭𝑌‬‭𝑙‬

‭𝑚‬
(θ, ‭ ‬φ)‭𝑢‬

‭𝐶𝐵‬
(‭𝑟‬)
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ψ
‭ℎ‬
(‭𝑟‬) ≈ ‭ ‬

‭𝑛‬,‭𝑙‬,‭𝑚‬
∑ ‭𝐴‬‭ℎ‬

‭𝑛‬,‭𝑙‬,‭𝑚‬
‭𝑅‬‭ℎ‬

‭𝑛‬,‭𝑙‬
(‭𝑟‬)‭𝑌‬‭𝑙‬

‭𝑚‬
(θ, ‭ ‬φ)‭𝑢‬

‭𝑉𝐵‬
(‭𝑟‬)

‭where r denotes the position vector in ellipsoidal coordinates, n, l, m are quantum numbers,‬

‭A‬‭e/h‬
‭n,l,m‬ ‭are n,l,m normalization constants, R‬‭e/h‬

‭n,l‬‭(r)‬‭are the radial functions obtained numerically,‬

‭Y‬‭l‬‭m‬‭(θ, φ) are spherical harmonics, and u‬‭CB/VB‬‭(r) are‬‭the Bloch functions’ periodic parts for the‬

‭conduction and valence bands. The normalization constant is calculated by through the‬

‭normalization principle, that the total integral of the absolute square of the wavefunction over all‬

‭space must always be 1. The radial functions are obtained through the magnitude of the‬

‭wavefunction solutions of the Schrödinger equation, calculated numerically by solving the‬

‭discretized Schrödinger equation in the finite potential well. The spherical harmonics describe‬

‭the angular part of the wavefunction. For simplicity, we assume the quantum numbers l and m‬

‭are 0. The Bloch functions describe the periodic part of the wavefunction in the crystal lattice for‬

‭the conduction and valence bands, respectively. They are calculated using Bloch’s theorem.‬

‭3.3 Quantum Confinement Effects and Transition Rate‬

‭Quantum confinement significantly alters the electronic properties of quantum dots. The‬

‭effective bandgap energy E‬‭gap‬ ‭is modified due to the‬‭spatial confinement of charge carriers and‬

‭can be expressed as:‬

‭𝐸‬
‭𝑔𝑎𝑝‬

‭ ‬ = ‭ ‬‭𝐸‬
‭𝑏𝑢𝑙𝑘‬,‭𝑔𝑎𝑝‬

‭ ‬ + ‭ ‬ ‭ħ‬‭2‬π‭2‬

‭2‬µ‭𝑑‬‭2‬ − ‭1‬.‭8‬‭𝑒‬‭2‬

‭4π‬ϵϵ
‭0‬
‭𝑑‬

‭where E‬‭bulk,gap‬ ‭is the bulk bandgap energy, d is the‬‭quantum dot diameter, and μ is the reduced‬

‭mass of the electron-hole pair. The dipole matrix element, essential for calculating transition‬

‭rates, is determined by the overlap of the initial and final state wavefunctions. This matrix‬

‭element is then used in Fermi’s Golden Rule to calculate the transition rate between states. The‬

‭rate at which excitons are generated by photon absorption is the product of the photon‬

‭generation rate, the quantum efficiency, and the transition rate. These factors collectively‬

‭determine the efficiency of exciton creation within the quantum dot system. Exciton‬

‭recombination, dissociation, migration, and trapping rates are critical to determining the overall‬

‭exciton density. The primary processes considered include recombination rate(The rate at which‬

‭excitons recombine typically proportional to the square of the exciton density), dissociation‬

‭rate(the rate at which excitons dissociate into free carriers, influenced by the binding energy and‬

‭temperature), migration rate(The rate at which excitons move within the quantum dot), trapping‬

‭rate(The rate at which excitons are trapped at defects or other localized states), and thermal‬

‭dissociation rate(The rate at which excitons dissociate due to thermal energy). The probability of‬
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‭Multiple Exciton Generation (MEG) occurs when the photon energy exceeds a thresh- old,‬

‭typically 2-3 times the bandgap energy. The rate of Auger recombination, a non-radiative‬

‭process, is proportional to the cube of the exciton density. Additionally, biexciton formation and‬

‭recombination are considered, where biexciton formation is influenced by the biexciton binding‬

‭energy and temperature. The overall exciton density, n‬‭exciton‬‭, considers both generation and loss‬

‭mechanisms:‬

‭𝑛‬
‭𝑒𝑥𝑐𝑖𝑡𝑜𝑛‬

‭ ‬ = ‭ ‬
Γ

‭𝑔𝑒𝑛‬
‭ ‬·‭ ‬(‭1‬‭ ‬+‭ ‬‭𝑃‬

‭𝑀𝐸𝐺‬
)

Γ
‭𝑟𝑒𝑐𝑜𝑚𝑏‬

‭ ‬+‭ ‬Γ
‭𝑡𝑟𝑎𝑝‬

‭ ‬+‭ ‬Γ
‭𝑡ℎ𝑒𝑟𝑚𝑎𝑙‬

‭ ‬+‭ ‬Γ
‭𝐴𝑢𝑔𝑒𝑟‬

‭ ‬+‭ ‬Γ
‭𝑏𝑖𝑒𝑥𝑐𝑖𝑡𝑜𝑛‬

‭where Γ‬‭x‬ ‭represents the rate value of the process x. The net exciton generation rate that‬

‭reaches the conversion area, accounting for various processes, is calculated as:‬

Γ
‭𝑛𝑒𝑡‬

= (Γ
‭𝑎𝑏𝑠‬

· η
‭𝑄𝐸‬

· ‭𝐸‬
‭𝑒𝑥𝑐𝑖𝑡𝑜𝑛‬

) + Γ
‭𝑑𝑖𝑠𝑠𝑜𝑐‬

− Γ
‭𝑟𝑒𝑐𝑜𝑚𝑏‬

+ Γ
‭𝑚𝑖𝑔𝑟𝑎𝑡𝑒‬

− Γ
‭𝑡𝑟𝑎𝑝‬

+ Γ
‭𝑡ℎ𝑒𝑟𝑚𝑎𝑙‬

‭This rate, along with the exciton density, directly relates to the overall energy production and‬

‭efficiency of a quantum dot system. The efficiency and performance of a quantum dot‬

‭photovoltaic system can be evaluated by calculating the power and energy output. This involves‬

‭determining the photocurrent generated by excitons, the resultant power output, and the total‬

‭energy output over a specified time interval. The photocurrent, Iphoto, is generated by the‬

‭movement of charge carriers (excitons) in response to light absorption. It is calculated as:‬

‭I‬‭photo‬ ‭= e · Γ‬‭exciton‬ ‭· A, where e is the elementary charge, Γ‬‭exciton‬ ‭is the exciton‬‭generation rate, A is‬

‭the area of the quantum dot photovoltaic cell. The power output, P‬‭output‬‭, is the product of the‬

‭photocurrent and the voltage across the cell. The total energy output, Eoutput, over a given time‬

‭interval is obtained by multiplying the power output by the duration of the interval.‬
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‭FIGURES AND FIGURE CAPTIONS‬

‭Figure 1. Solar Intensity and Zenith Angle Plot Over A Day.‬‭Line plot shows the variation in‬

‭solar intensity and zenith angle for four days, chosen to represent quarters of the year. The‬

‭dotted lines indicate zenith angles and the solid indicate solar intensity.‬

‭9‬

‭272‬

‭273‬

‭274‬

‭275‬

‭276‬



‭Figure 2. Power Output vs Time of Day for Different Days. (a)‬‭This plot shows how the‬

‭power output changes over the course of 4 different selected days. It adapts a line fit of the‬

‭data, which allows us to see the changes in power of various graphs at different hours. The‬

‭individual dots are the true power outputs for a given hour and day.‬‭(b)‬‭This plot is similar to‬‭(a)‬‭,‬
‭but uses a curve fit. This allows us to discern more general trends about how the power output‬

‭progresses over a day.‬
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‭Figure 3. Cumulative Power Output vs Time for Different Days.‬‭Line plot showing the‬

‭cumulative power output over the course of four selected days. This plot shows when power‬

‭starts being generated, the slopes show when it is at maximum generation, and when power‬

‭output stops over the period of a day.‬
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‭Figure 4. Daily Cumulative Power Output. (a)‬‭Heatmap‬‭of the predicted power outputs from‬

‭January 1st to September 30th. The heat varies over a day, allowing us to see the patterns in‬

‭power outputs for a given hour over our date range.‬‭(b)‬‭This plot shows the cumulative power‬

‭output for every day in the year.‬
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‭Figure 5. Quantum Dot Size Distribution.‬‭Shows the‬‭distribution of quantum dot sizes in our‬

‭simulation. The curve represents the function for CdSe quantum dots, and the frequency‬

‭histogram helps identify where the sizes are focused. The distribution is lognormal.‬
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‭Figure 6. Example Electron Wavefunction.‬‭Shows the‬‭real and imaginary parts of the‬

‭wavefunction, as well as the probability density. The real part of the wavefunction exhibits an‬

‭oscillatory pattern, characteristic of the particle's quantum state. Nodes, where the wave‬

‭function crosses zero, indicate points of zero probability density, and the symmetry suggests the‬

‭potential well's shape and the particle's energy state. The imaginary part complements the real‬

‭part, providing critical phase information essential for understanding phenomena like‬

‭interference and tunneling. The probability density, represented by the squared magnitude of the‬

‭wavefunction, shows the likelihood of finding the particle at different positions. Higher probability‬

‭density areas indicate where the particle is most likely confined, while the spreading of the‬

‭wavefunction gives insights into the degree of quantum confinement.‬

‭APPENDIX‬
‭Code and required dependencies are included in a separate file.‬
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