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 SUMMARY 
 Quantum dots are the future of solar energy production, promising conversion efficiencies that 

 might one day rival or even outperform traditional solar panel technology. However, 

 experimental development of quantum dots with the most optimal setups takes months of 

 tedious and costly preparation. To mitigate the cost of this research, simulations of said 

 quantum dots can be used to identify optimal parameters without the need to conduct numerous 

 lengthy experiments. We hypothesize that by taking into consideration the importance of 

 nanoscale quantum phenomena such as confinement and recombination, our developed Python 

 simulation will be able to model the conversion efficiency of CdSe quantum dots in a 

 photovoltaic solar cell with an error of under 5%. Our simulation found CdSe quantum dot 

 conversion efficiency to be 1.66%, which demonstrates comparable rates to the 1.5% efficiency 

 at 50.6% sun found by Lee et. al in 2008 in their experimentation with colloidal CdSe quantum 

 dots– representing a 10.66% realized error and helping prove that simulations can indeed be 

 used as a convincing alternative to painstaking experimentation in the development of optimized 

 quantum dot technologies for energy production. In the future, research should concentrate on 

 reducing this error by factoring in more detailed modeling of quantum phenomenon such as 

 trapping and multiple exciton generation. 
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 INTRODUCTION 
 The quest for more efficient energy conversion technologies has spurred considerable interest 

 in the development of advanced photovoltaic materials. Among these, quantum 

 dots—nanoscale semiconductor particles—have emerged as a promising alternative to 

 traditional solar cells due to their potential for high conversion efficiencies and tunable electronic 

 properties. Quantum dots, particularly Cadmium Selenide (CdSe), are noteworthy for their 

 size-dependent electronic and optical characteristics. This phenomenon allows quantum dots to 

 absorb and emit light at specific wavelengths, potentially enhancing their performance in 

 photovoltaic applications. However, the experimental process to optimize these materials is both 

 time-consuming and costly, often involving extensive trial and error. 

 Simulations offer a compelling alternative by enabling researchers to model and predict the 

 performance of quantum dots without the need for exhaustive physical experimentation. 

 Leveraging biophysics equations to simulate the electronic properties and energy conversion 

 efficiency of CdSe quantum dots can significantly expedite the development process. The 

 primary challenge is to accurately account for the nanoscale quantum phenomena, such as 

 quantum confinement and recombination dynamics, that influence the efficiency of these 

 materials. Accurate simulation requires incorporating these complex quantum effects into 

 predictive models to achieve reliable and actionable results. Our research aims to address this 

 challenge by developing a Python-based simulation that models the energy conversion 

 efficiency of CdSe quantum dots in photovoltaic cells. We hypothesize that by incorporating 

 detailed quantum mechanical properties and utilizing biophysics equations, our simulation will 

 be capable of predicting the conversion efficiency with an error margin of less than 5%. This 

 hypothesis is grounded in the assumption that accounting for nanoscale quantum phenomena, 

 such as confinement and recombination rates, will yield a simulation result more closely aligned 

 with experimental data. 

 The purpose of this study is to validate the accuracy of our simulation model and demonstrate 

 its potential as a tool for optimizing quantum dot-based solar cells. We anticipate that our 

 findings will underscore the viability of simulation as a cost-effective alternative to physical 

 experimentation in the development of advanced photovoltaic technologies. By achieving a 

 simulation accuracy within the proposed error margin, we hope to establish a robust framework 

 for future research and development in quantum dot photovoltaics, ultimately advancing the field 

 towards more efficient and practical solar energy solutions. 
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 RESULTS 
 Our simulation showed a predicted solar energy conversion efficiency of 1.66% on average for 

 CdSe quantum dots in our system. When comparing our results to similarly unmodified and 

 unoptimized CdSe quantum dots such as the 50% sun efficiency outlined by 

 https://pubs.acs.org/doi/full/10.1021/jp802572b  ,  we get a margin of error of only 10.67%. 

 Our first set of results pertains to the simulation of varying solar intensities throughout the year. 

 Solar intensity was adjusted for atmospheric effects and focused by the funnel, recorded hourly. 

 As shown in Figure 1, solar intensity peaked around midday and varied significantly based on 

 the zenith angle. The data illustrates a consistent pattern, with higher intensities observed 

 during the summer months and lower intensities during the winter months.  The zenith angle 

 reaches its minimum on day 182, corresponding to the summer solstice. Solar intensity is 

 highest around this day but decreases to even lower than day 91 by the time of day 273, 

 indicating that the period following the summer solstice receives the highest solar intensity, 

 aside from the effect of the clearness index. 

 Figure 2 shows the power output, analyzed for checkpoint days 1, 91, 182, and 273. In the line 

 plot shown in Figure 2a, we see that day 182 exhibited the highest overall power generation. 

 However, at hours 10 and 11, day 91 and day 273 showed higher power output, suggesting 

 variations in weather conditions or the probabilistic quantum effects in the quantum dot system. 

 The results indicate that while solar intensity is a significant factor, it is not the sole determinant 

 of power output. The polynomial curve fit in Figure 2b highlights that day 182 consistently had 

 higher power output, but day 91 was comparable at some points, and day 273 showed greater 

 power output than even day 91 despite a lower solar intensity. This is due to the higher 

 clearness index at day 273. This demonstrates the complex interplay of various factors affecting 

 power output, and the importance of considering all of these various factors. Figure 3, showing 

 the cumulative power output throughout the day for different days, showed that the total energy 

 produced increased steadily, with higher slopes around midday corresponding to the more 

 optimal positioning of the sun. This confirms the influence of solar intensity on cumulative 

 energy production. 

 Figure 4a provides a visual representation of the temporal and daily variations in power output. 

 It shows that power output peaks between days 169 and 229, corresponding to the summer 

 period with typically sunny days in Austin. Gaps in the heatmap such as those seen on days 94 
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 and 253 indicate periods of high cloudiness, which explains their relatively low power outputs 

 despite the days around them having high power outputs. Figure 4b shows the cumulative 

 power output for each day and highlights the influence of the clearness index. Higher cumulative 

 power outputs correspond to higher clearness index values, emphasizing the importance of this 

 metric in power output calculations, but gaps and unpredictability is also seen, which can be 

 attributed to weather conditions. 

 Figures 5 and 6 display some of the quantum characteristics of the simulation. Figure 5 shows 

 the size distribution.used for simulating the variations in size commonly found in quantum dots. 

 Employing a logarithmic scale was crucial for correctly modeling the quantum dot array, as it 

 reflects the natural distribution of sizes. We used a lognormal distribution with a mean diameter 

 of 2 nanometers and a standard deviation of 0.4 nanometers. Figure 6 shows a sample electron 

 wavefunction. The wavefunction demonstrates the quantum confinement effects in the quantum 

 dot. The oscillatory nature of the wavefunction and the corresponding probability density peaks 

 illustrate the discrete energy levels and the spatial confinement of the electron. The probability 

 density is higher near the center of the quantum dot and decreases towards the edges, 

 indicating that the electron is more likely to be found near the center. 

 DISCUSSION 

 The primary results indicate that our simulation effectively models the conversion efficiency of 

 CdSe quantum dots with a realized error of 10.66%. The variations in solar intensity throughout 

 the year, as shown in Figure 1, demonstrate the importance of considering seasonal and daily 

 changes in solar exposure when designing photovoltaic systems. The power output results, 

 especially those depicted in Figures 2 and 3, highlight the complexity of factors influencing 

 energy production, such as weather conditions and quantum effects. 

 The cumulative power output data (Figure 4) emphasize the impact of clearness index and 

 atmospheric conditions on overall power generation. Figures 5 and 6 provide insights into the 

 quantum mechanical behavior of the quantum dots, including the size distribution and 

 wavefunction characteristics, which are crucial for understanding their energy conversion 

 properties. 

 Several factors could have influenced our results. One significant limitation is the accuracy of 

 our atmospheric data, which directly impacts the calculated solar intensity and, consequently, 
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 the power output. Additionally, the simplifications made in modeling quantum mechanical 

 processes, such as assuming certain quantum numbers and ignoring some complex 

 interactions, could have introduced errors. 

 The biggest error we have to acknowledge is inaccurate or missing data parameters vital to 

 ensuring the maximum accuracy of our simulation. Since values such as that of the trapping 

 coefficient for CdSe quantum dots are not readily available, we have to manually approximate 

 the value, which introduces significant deviations from the real values. 

 Future research should be aimed at utilizing the most optimal parameters in these simulations, 

 which would ensure that the simulation matches reality much more closely. Moreover, 

 optimization scripts could be incorporated to understand the ideal parameter to use for a 

 quantum dot, which could influence the processes used to create the quantum dot in the 

 experiment. 

 In conclusion, our simulation of CdSe quantum dots demonstrated a conversion efficiency 

 comparable to experimental results, validating the potential of simulation as a tool for optimizing 

 quantum dot technologies. By addressing the limitations and exploring new avenues of 

 research, we can further enhance the efficiency and practicality of quantum dots in solar energy 

 applications. 

 MATERIALS AND METHODS 

 To accurately simulate the intake of sunlight, we begin by calculating the zenith angle, which is 

 crucial for understanding the interaction of sunlight with our system. The zenith angle, denoted 

 as θ  z  , is the angle between the vertical direction and the line to the sun. For our location in 

 Austin, Texas, θ  z  is given by: 

 θ  z  =cos  −1  (sin(δ)sin(φ)+cos(δ)cos(φ)cos(H)) (1) 

 where δ is the solar declination, φ is the latitude of Austin, and H is the solar hour angle. These 

 parameters vary with time and date and are essential for calculating the precise position of the 

 sun in the sky. δ and H are found from formulae given by NOAA. We then took the cosine of this 

 angle and multiplied it by the solar constant (approximately 1361W/m2) to find the adjusted 

 solar intensity. If cos(θ  z  ) is not positive, this adjusted quantity just becomes equal to 0 as the sun 

 is beneath the horizon at that time. 

 We now need to correct the sunlight intensity value based on the atmosphere. We use the 

 clearness index, for which values will be sourced from NASA’s Atmospheric Science Data 

 Center and applied to the adjusted intensity on an hourly basis, ensuring a dynamic adaptation 
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 to atmospheric conditions. By multiplying our adjusted intensity with this factor, we get the true 

 value of solar intensity that hits the ground on any given day. 

 The funnel’s hyperbolic shape is modeled to focus the incoming solar radiation onto the 

 quantum dot array. The reflective properties of the polished aluminum funnel are crucial here. 

 The concentration factor is calculated based on the funnel’s geometry, specifically the ratio of 

 the cross-sectional area of the funnel’s wider end to that of the narrower end focused on the 

 quantum dot array. Using this factor and the reflective percentage of polished aluminum, we see 

 that I  focus  is equal to the product of the reflectivity  of polished aluminum (83%), the intensity after 

 atmospheric adjustments, and the concentration factor of 2500 (accounting for the aperture radii 

 of 50 and 1 centimeters, respectively). 

 We calculate the energy per photon using Planck’s equation, using the average photon 

 wavelength of 550 nm. This is done by the equation  . With the total intensity and  𝐸 
 𝑝ℎ𝑜𝑡𝑜𝑛 

   =     ℎ𝑐 
λ

 the energy per photon, we can calculate the number of photons per second striking a area as 

 the product between I  total  and area divided by E  photon  .  Finally, we obtain the photon generation 

 rate per hour by multiplying the previous value by a factor of 3600. This rate is a crucial input 

 metric for the next part of our simulation, the quantum dot array. To model quantum dots and 

 excitons accurately, we must consider as many major properties and processes as possible, 

 including material composition, geometric structure, quantum mechanical properties, and size 

 dependent properties. This ensures that we calculate the exciton generation rate as accurately 

 as possible. The chosen material for our quantum dots is Cadmium Selenide (CdSe), known for 

 its high absorption efficiency. The distribution of quantum dot sizes is typically characterized by 

 a lognormal distribution, where D(d) is the probability density for diameters, μ = ln(3.9×10  −9  ) 

 represents the mean logarithm of the diameters, and σ = 0.4 is the standard deviation of the 

 logarithm of the diameters. The distribution will range from 2.3 to 5.5 nanometers. To properly 

 simulate the characteristics of excitons and calculate the rate at which excitons transition 

 between energy states, we numerically solve the Schr ̈odinger equation for a 3D finite potential 

 well. The finite difference method is employed using a grid size of 25 and a step size governed 

 by the radius divided by the grid size. This provides the energy levels of our dot and 

 wavefunctions for electrons and holes. The Laplacian operator ∇  2  of the Schrödinger equation 

 is discretized using the central difference method. General wavefunctions for electrons (ψ  e  ) and 

 holes (ψ  h  ) in an ellipsoidal quantum dot with a 3D  finite potential well can be approximated as: 

ψ
 𝑒 
( 𝑟 ) ≈    

 𝑛 , 𝑙 , 𝑚 
∑  𝐴  𝑒 

 𝑛 , 𝑙 , 𝑚 
 𝑅  𝑒 

 𝑛 , 𝑙 
( 𝑟 ) 𝑌  𝑙 

 𝑚 
(θ,    φ) 𝑢 

 𝐶𝐵 
( 𝑟 )
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ψ
 ℎ 
( 𝑟 ) ≈    

 𝑛 , 𝑙 , 𝑚 
∑  𝐴  ℎ 

 𝑛 , 𝑙 , 𝑚 
 𝑅  ℎ 

 𝑛 , 𝑙 
( 𝑟 ) 𝑌  𝑙 

 𝑚 
(θ,    φ) 𝑢 

 𝑉𝐵 
( 𝑟 )

 where r denotes the position vector in ellipsoidal coordinates, n, l, m are quantum numbers, 

 A  e/h 
 n,l,m  are n,l,m normalization constants, R  e/h 

 n,l  (r)  are the radial functions obtained numerically, 

 Y  l  m  (θ, φ) are spherical harmonics, and u  CB/VB  (r) are  the Bloch functions’ periodic parts for the 

 conduction and valence bands. The normalization constant is calculated by through the 

 normalization principle, that the total integral of the absolute square of the wavefunction over all 

 space must always be 1. The radial functions are obtained through the magnitude of the 

 wavefunction solutions of the Schrödinger equation, calculated numerically by solving the 

 discretized Schrödinger equation in the finite potential well. The spherical harmonics describe 

 the angular part of the wavefunction. For simplicity, we assume the quantum numbers l and m 

 are 0. The Bloch functions describe the periodic part of the wavefunction in the crystal lattice for 

 the conduction and valence bands, respectively. They are calculated using Bloch’s theorem. 

 3.3 Quantum Confinement Effects and Transition Rate 

 Quantum confinement significantly alters the electronic properties of quantum dots. The 

 effective bandgap energy E  gap  is modified due to the  spatial confinement of charge carriers and 

 can be expressed as: 

 𝐸 
 𝑔𝑎𝑝 

   =     𝐸 
 𝑏𝑢𝑙𝑘 , 𝑔𝑎𝑝 

   +     ħ  2 π 2 

 2 µ 𝑑  2 −  1 . 8  𝑒  2 

 4π ϵϵ
 0 
 𝑑 

 where E  bulk,gap  is the bulk bandgap energy, d is the  quantum dot diameter, and μ is the reduced 

 mass of the electron-hole pair. The dipole matrix element, essential for calculating transition 

 rates, is determined by the overlap of the initial and final state wavefunctions. This matrix 

 element is then used in Fermi’s Golden Rule to calculate the transition rate between states. The 

 rate at which excitons are generated by photon absorption is the product of the photon 

 generation rate, the quantum efficiency, and the transition rate. These factors collectively 

 determine the efficiency of exciton creation within the quantum dot system. Exciton 

 recombination, dissociation, migration, and trapping rates are critical to determining the overall 

 exciton density. The primary processes considered include recombination rate(The rate at which 

 excitons recombine typically proportional to the square of the exciton density), dissociation 

 rate(the rate at which excitons dissociate into free carriers, influenced by the binding energy and 

 temperature), migration rate(The rate at which excitons move within the quantum dot), trapping 

 rate(The rate at which excitons are trapped at defects or other localized states), and thermal 

 dissociation rate(The rate at which excitons dissociate due to thermal energy). The probability of 
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 Multiple Exciton Generation (MEG) occurs when the photon energy exceeds a thresh- old, 

 typically 2-3 times the bandgap energy. The rate of Auger recombination, a non-radiative 

 process, is proportional to the cube of the exciton density. Additionally, biexciton formation and 

 recombination are considered, where biexciton formation is influenced by the biexciton binding 

 energy and temperature. The overall exciton density, n  exciton  , considers both generation and loss 

 mechanisms: 

 𝑛 
 𝑒𝑥𝑐𝑖𝑡𝑜𝑛 

   =    
Γ

 𝑔𝑒𝑛 
   ·   ( 1    +    𝑃 

 𝑀𝐸𝐺 
)

Γ
 𝑟𝑒𝑐𝑜𝑚𝑏 

   +   Γ
 𝑡𝑟𝑎𝑝 

   +   Γ
 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 

   +   Γ
 𝐴𝑢𝑔𝑒𝑟 

   +   Γ
 𝑏𝑖𝑒𝑥𝑐𝑖𝑡𝑜𝑛 

 where Γ  x  represents the rate value of the process x. The net exciton generation rate that 

 reaches the conversion area, accounting for various processes, is calculated as: 

Γ
 𝑛𝑒𝑡 

= (Γ
 𝑎𝑏𝑠 

· η
 𝑄𝐸 

·  𝐸 
 𝑒𝑥𝑐𝑖𝑡𝑜𝑛 

) + Γ
 𝑑𝑖𝑠𝑠𝑜𝑐 

− Γ
 𝑟𝑒𝑐𝑜𝑚𝑏 

+ Γ
 𝑚𝑖𝑔𝑟𝑎𝑡𝑒 

− Γ
 𝑡𝑟𝑎𝑝 

+ Γ
 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 

 This rate, along with the exciton density, directly relates to the overall energy production and 

 efficiency of a quantum dot system. The efficiency and performance of a quantum dot 

 photovoltaic system can be evaluated by calculating the power and energy output. This involves 

 determining the photocurrent generated by excitons, the resultant power output, and the total 

 energy output over a specified time interval. The photocurrent, Iphoto, is generated by the 

 movement of charge carriers (excitons) in response to light absorption. It is calculated as: 

 I  photo  = e · Γ  exciton  · A, where e is the elementary charge, Γ  exciton  is the exciton  generation rate, A is 

 the area of the quantum dot photovoltaic cell. The power output, P  output  , is the product of the 

 photocurrent and the voltage across the cell. The total energy output, Eoutput, over a given time 

 interval is obtained by multiplying the power output by the duration of the interval. 
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 FIGURES AND FIGURE CAPTIONS 

 Figure 1. Solar Intensity and Zenith Angle Plot Over A Day.  Line plot shows the variation in 

 solar intensity and zenith angle for four days, chosen to represent quarters of the year. The 

 dotted lines indicate zenith angles and the solid indicate solar intensity. 
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 Figure 2. Power Output vs Time of Day for Different Days. (a)  This plot shows how the 

 power output changes over the course of 4 different selected days. It adapts a line fit of the 

 data, which allows us to see the changes in power of various graphs at different hours. The 

 individual dots are the true power outputs for a given hour and day.  (b)  This plot is similar to  (a)  , 
 but uses a curve fit. This allows us to discern more general trends about how the power output 

 progresses over a day. 
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 Figure 3. Cumulative Power Output vs Time for Different Days.  Line plot showing the 

 cumulative power output over the course of four selected days. This plot shows when power 

 starts being generated, the slopes show when it is at maximum generation, and when power 

 output stops over the period of a day. 
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 Figure 4. Daily Cumulative Power Output. (a)  Heatmap  of the predicted power outputs from 

 January 1st to September 30th. The heat varies over a day, allowing us to see the patterns in 

 power outputs for a given hour over our date range.  (b)  This plot shows the cumulative power 

 output for every day in the year. 
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 Figure 5. Quantum Dot Size Distribution.  Shows the  distribution of quantum dot sizes in our 

 simulation. The curve represents the function for CdSe quantum dots, and the frequency 

 histogram helps identify where the sizes are focused. The distribution is lognormal. 
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 Figure 6. Example Electron Wavefunction.  Shows the  real and imaginary parts of the 

 wavefunction, as well as the probability density. The real part of the wavefunction exhibits an 

 oscillatory pattern, characteristic of the particle's quantum state. Nodes, where the wave 

 function crosses zero, indicate points of zero probability density, and the symmetry suggests the 

 potential well's shape and the particle's energy state. The imaginary part complements the real 

 part, providing critical phase information essential for understanding phenomena like 

 interference and tunneling. The probability density, represented by the squared magnitude of the 

 wavefunction, shows the likelihood of finding the particle at different positions. Higher probability 

 density areas indicate where the particle is most likely confined, while the spreading of the 

 wavefunction gives insights into the degree of quantum confinement. 

 APPENDIX 
 Code and required dependencies are included in a separate file. 
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